Friday, 22 October 2021

Multispectral Image Analysis Using Random Forest

Barrett Lowe and Arun Kulkarni

Department of Computer Science, The University of Texas at Tyler

ABSTRACT

Classical methods for classification of pixels in multispectral images include supervised classifiers such as the maximum-likelihood classifier, neural network classifiers, fuzzy neural networks, support vector machines, and decision trees. Recently, there has been an increase of interest in ensemble learning – a method that generates many classifiers and aggregates their results. Breiman proposed Random Forestin 2001 for classification and clustering. Random Forest grows many decision trees for classification. To classify a new object, the input vector is run through each decision tree in the forest. Each tree gives a classification. The forest chooses the classification having the most votes. Random Forest provides a robust algorithm for classifying large datasets. The potential of Random Forest is not been explored in analyzing multispectral satellite images. To evaluate the performance of Random Forest, we classified multispectral images using various classifiers such as the maximum likelihood classifier, neural network, support vector machine (SVM), and Random Forest and compare their results.

KEYWORDS

Classification, Decision Trees, Random Forest, Multispectral Images

Original Source URL: https://airccse.org/journal/ijsc/papers/6115ijsc01.pdf

https://airccse.org/journal/ijsc/current2015.html





No comments:

Post a Comment

February Issue Journal! Authors are invited to submit papers!

International Journal on Soft Computing (IJSC) ISSN: 2229 - 6735 [Online]; 2229 - 7103 [Print] https://airccse.org/journal/ijsc/ijsc.html He...